Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR
نویسندگان
چکیده
This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR”. In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is ‘variance’ and ‘Variance of Variances’. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance. Keywords—Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.
منابع مشابه
Detection of coxarthrosis in femoral head radiographic images seems limited mainly to vertically oriented pattern features.
Out of 120 conventional hip joint X-rays, two indepenendent examiners have chosen 27 healthy and 62 coxarthrotic joints. Central parts of femoral head images were digitalized (300 points/inch) and pixel density values analysed. Two methods were applied separately to horizontal rows and to vertical columns: variance coefficient calculation and power coefficients of Fourier harmonics. The arithme...
متن کاملExtraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images
Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UF...
متن کاملExtraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images
Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UF...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010